Matematik 1 Dersi 5. Ünite Sorularla Öğrenelim
Limit, Süreklilik Ve Türev
Türevi olan sürekli bir fonksiyon hangi aralıklarda artan ve azalandır?
f : [a, b]→ℜ fonksiyonu sürekli ve (a, b) açık aralığının her noktasında türevi olan bir fonksiyon olsun.
1. Eğer her x ∈ (a, b) için f '(x) > 0 ise f fonksiyonu [a, b] aralığında artandır.
2. Eğer her x ∈ (a, b) için f '(x) < 0 ise f fonksiyonu [a, b] aralığında azalandır.
işleminin sonucu nedir?
işleminin sonucu nedir?
?/? belirsizliği oluşmaktadır.
Rasyonel ifade üzerinde bir dizi işlem yapalım.
Pay ve paydayı x2 ye bölelim.
= | 6 + 0 - 0 | |
2 + 0 + 0 |
= | 6 | = 3 |
2 |
Hem süreklilik hem de ara değer teoremini bir örnek üzerinde açıklayınız?
Eğer otomobillerin hız göstergesi sürekli bir fonksiyon olarak düşünülürse, otomobilin hızı 60 km/s’e çıkmadan önce hız göstergesi 60km/s’den küçük her hızı mutlaka çok kısa bir süre de olsa göstermesi, hem sürekliliğe hem de ara değer teoremine bir örnek olarak verilebilir.
Türevin tanımı yapınız ve matematikçilerin türev için buldukları kurallardan iki tanesini maddeler halinde belirtiniz?
Yukarıdaki fonksiyonun mutlak maksimum noktasını bulunuz?
y = f(x) fonksiyonunun yerel maksimum noktaları (2, 5), (4, 6) dır. y = f(x) fonksiyonunun mutlak maksimum noktası (4, 6) dır. Mutlak maksimum (en büyük) değeri f(4) = 6 dır.
Türev nedir?
Türev bir fonksiyonun bir noktadaki anlık değişim hızıdır.
Bugün kullanılan limit kavramını kimler son haline getirmiştir ?
Bu gün kullanılan limit kavramı ise 19. yy.’da özellikle Fransız matematikçi Cauchy (1789 – 1857) ile Alman matematikçi Weierstrass (1815 – 1897) ın katkıları ile olgunluğa ulaşmıştır.
Limit kavramı hangi tarihte ve kim tarafından ortaya atılmıştır ?
Limit kavramı tarihte ilk kez Datça’lı Eudoxus (M.Ö. 408 – 355) yıllarında ortaya atılmıştır.
İki fonksiyonun toplamı, çarpımı ve bölümü limit teoremine göre nasıl hesaplanır?
İki fonksiyonun toplamının limiti; limitler toplamına eşittir. İki fonksiyonun çarpımının limiti; limitler çarpımına eşittir. İki fonksiyonun bölümünün limiti; paydanın limiti sıfırdan farklı olmak üzere, limitlerin bölümüne eşittir.
Türev ne zaman ve kim tarafından geliştirilmiştir?
Türev 17. yüzyılda İngiliz bilim adamı Newton (1642 – 1727) ile Alman bilim adamı Leibniz (1646 – 1716) tarafından geliştirilmiştir.
Türev hangi bilimlerde daha çok kullanılır ve hangi kavramla ilişkilidir ?
Türev; fizik, kimya, mühendislik gibi alanlardan tıp, ekonomi ve sosyal bilimlere kadar tüm uygulamalı bilimlerin vazgeçilmez aracıdır. Türev kavramı genel limit kavramı yardımı ile anlatılmaktadır.
Sürekli fonksiyon tanımı nedir?
Eğer, limx-xa
Mutlak maksimum ve mutlak minimum değerleri ne demektir? Açıklayınız?
Bir fonksiyonun aldığı değerlerin varsa en büyüğüne fonksiyonun mutlak maksimum değeri, aldığı değerlerin varsa en küçüğüne de fonksiyonun mutlak minimum değeri denir. [a, b] kapalı aralık üzerinde tanımlı sürekli bir fonksiyon en az birer noktada mutlak maksimum ve mutlak minimum değerini alır.
Türevde yerel maksimum ve yerel minimum noktaları nasıl bulunur, açıklayınız?
Bir fonksiyonun ikinci türevi negatif ise bu nokta yerel maksimum noktası, pozitif ise bu nokta bir yerel minimum noktasıdır. Eğer ikinci mertebeden türev sıfır ise, maksimum ya da minimum nokta olup olmadığına bu yöntemle karar verilemez, birinci türevin işaretiyle karar verilir.
Exodus’un limit yaklaşımı nasıl açıklanabilir ?
Exodus limitin eğrilerle sınırlanmış alanların, üçgen veya dikdörtgenin alanları yardımıyla bulunabileceğini söylemiştir. Eudoxus’un düşüncesi bir çemberin içine çizilen bir düzgün çokgenin kenar sayısını 4, 8, 16, 32, 64 ... gibi her seferinde iki kat artırdığımızda, çokgenlerin giderek çembere ve çokgenlerin alanının da artarak dairenin alanına yaklaşması ile açıklanabilir.
f(x) = 4x2 – 5, x < 2 ise
f(x) = 3x + 5, x? 2 ise
f(x) fonksiyonunun x = 2 noktasındaki limiti kaçtır?
f(x) = 4x2 – 5, x < 2 ise
f(x) = 3x + 5, x? 2 ise
f(x) fonksiyonunun kritik noktası 2’dir. Fonksiyon x’in 2’den büyük veya küçük oluşuna göre 2 şekilde tanımlanmaktadır.
Bu tip fonksiyonları çözerken sağdan ve soldan yaklaşımın limitlerini ayrı ayrı hesaplamamız gerekir.
x’e soldan yaklaştığımızda 4x2 – 5 fonksiyonunu kullanırız.
Limx›2- (4x2 – 5) = 4.22 – 5
Limx›2- (4x2 – 5) = 11
x’e sağdan yaklaştığımızda 3x + 5 fonksiyonunu kullanırız.
Limx›2+ = 3x + 5 = 3.2 + 5 = 11
Sağ ve sol limitler eşit olduğundan f(x) fonksiyonunun x ›2 için limiti 11’dir.
Yukarıdaki fonksiyonun yerel maksimum noktasını bulunuz?
x = 2 noktası yerel maksimum noktasının apsisi olduğuna göre f(2) = 5 yerel maksimum değeri ve (2, 5) noktası yerel maksimum noktasıdır. x = 4 noktası yerel maksimum noktasının apsisi olduğuna göre, f(4) = 6 yerel maksimum değeri ve (4, 6) noktası yerel maksimum noktasıdır.
İşleminin sonucu nedir?
x yerine 2 koyarsak 0/0 belirsizliği oluşur.
İfadeyi çarpanlarına ayırırsak;
x6 – 64 |
| |||||
x3 – 8 |
= x3 + 8 sonucunu elde ederiz. Bunu limit ifadesinde yerine koyarsak;
limx›2 (x3 + 8) = 8 + 8 = 16 buluruz.
f(x) = x2 nin x=2 olduğundaki limiti nedir ve nasıl açıklanır?
x değişkeni 2 sayısına yaklaşırsa f(x) = x2 de 2’nin karesi olan 4’e yaklaşır. Yani x→2 ise x2→ 4 olur. İşte bu durumda x → 2 için veya x = 2 noktasında f fonksiyonunun limiti 4’tür denir ve limx-2f(x)= limx-2x2=4 biçimde gösterilir.
Limx›3 (|x – 4|)
İşleminin sonucu nedir?
Limitlerin mutlak değer özelliğinden;
limx›3 (|x – 4|)
= |limx›3 (x – 4)|
Şimdi mutlak değer içine almadan Limx›3 f(x) değerini bulalım
Limx›3 (x – 4) = 3 – 4 = -1
Şimdi bulduğumuz değerin mutlak değerini alalım.
|limx›3 (x – 4)|= | - 1| = 1
f(x) = x3 + 2x + 5 = 0 denkleminin [–2, 1] aralığında bir kökü var mıdır?
f(x) = x3 + 2x + 5 = 0 denkleminin [–2, 1] aralığında bir kökü olup olmadığını tespit etmek maksadıyla, fonksiyonun tanım kümesinin uçlarında aldığı değerlere bakılacak olursa, f(–2) = –7 ve f(1) = 8 olduğu görülür. Ara Değer Teoremine göre, 0 sayısı –7 ile 8 arasında olduğundan dolayı, fonksiyon en az bir noktada sıfır değerini almak zorundadır.
İşleminin sonucu aşağıdakilerden hangisidir?
x = 4 için 0/0 belirsizliği oluşmaktadır.
x2 + x – 20 = (x - 4)(x + 5)
x2 – 7x + 12 = (x – 3)(x – 4)
olduğundan;
Süreklilik özelliği nedir ?
Bir fonksiyonun bir noktadaki limitinin fonksiyonun o noktadaki değerine eşit olması fonksiyona süreklilik özelliğini kazandırır.
Ara değer teoremi ne demektir? Açıklayınız?
Mutlak maksimum ve mutlak minimum özelliklerine ilaveten sürekli fonksiyonların bir başka özelliği ise [a, b] kapalı aralığı üzerinde tanımlı sürekli bir fonksiyon aldığı iki değer arasındaki her değeri en az bir noktada alır. Bu özelliğe “Ara Değer Teoremi” denir.
Yukarıdaki fonksiyonun mutlak minimum noktasını bulunuz?
y = f(x) fonksiyonunun mutlak minimum noktası (5, 1) dir. Mutlak minimum (en küçük) değeri f(5) = 1 dir.
Limx›2 (3x2 – 4x + 9) Limitinin sonucu nedir?
Polinom şeklindeki fonksiyonların x = a nokasındaki limitleri f(a) ile bulunur.
f(x) = 3x2 – 4x + 9
= 3.22 – 4.2 + 9
= 13
-
AÖF Sınavları İçin Ders Çalışma Taktikleri Nelerdir?
date_range 8 Gün önce comment 11 visibility 17883
-
2024-2025 Öğretim Yılı Güz Dönemi Kayıt Yenileme Duyurusu
date_range 7 Ekim 2024 Pazartesi comment 1 visibility 1167
-
2024-2025 YKS Ek Yerleştirme İle Yerleşen Adayların Çevrimiçi (Online) Başvuru ve Kayıt Duyurusu
date_range 24 Eylül 2024 Salı comment 1 visibility 616
-
Çıkmış Soruları Gönder Para Kazan!
date_range 10 Eylül 2024 Salı comment 5 visibility 2741
-
2023-2024 Öğretim Yılı Yaz Okulu Sınavı Sonuçları Açıklandı!
date_range 27 Ağustos 2024 Salı comment 0 visibility 908
-
Başarı notu nedir, nasıl hesaplanıyor? Görüntüleme : 25575
-
Bütünleme sınavı neden yapılmamaktadır? Görüntüleme : 14507
-
Akademik durum neyi ifade ediyor? Görüntüleme : 12511
-
Harf notlarının anlamları nedir? Görüntüleme : 12501
-
Akademik yetersizlik uyarısı ne anlama gelmektedir? Görüntüleme : 10424