aofsoru.com

Uzaktan Algılama Dersi 7. Ünite Özet

Sınıflandırma

TEMEL KAVRAMLAR

Örüntü tanıma olarak ta adlandırılan sınıflandırma işlemi medikal görüntüleme, optik karakter tanıma, video izleme, vb. birçok bilgisayarlı görme tabanlı uygulamaların yanı sıra otomatik öğrenme ve uzaktan algılama uygulamalarında da yaygın bir şekilde kullanılmaktadır. Uzaktan algılamada sınıflandırma, tematik bilgiyi oluşturan görüntüdeki anlamlı örüntü gruplarının belirlenmesi işlemidir. Bir başka deyişle farklı mekânsal, spektral, radyometrik ve zamansal bileşenleri olan görüntü verisinin, farklı yüzey materyallerini ve durumlarını kategorize eden açıklayıcı etiketlere veya tematik bilgiye dönüştürülmesidir. Sınıflandırma işlemi ile görüntüdeki farklı özelliklerin veya objelerin belirlenmesi ve tanımlanmasını sağlayacak kantitatif karar fonksiyonları oluşturulur. Kantitatif karar fonksiyonlarının oluşturulmasında görüntüye ait spektral ve mekânsal bilgilerle bölgeye ait diğer yardımcı veriler kullanılır. Sınıflandırmaya girdi olacak bu bilgilere özellik ve özelliklerin oluşturduğu uzaya özellik uzayı denir. Temel problem, bir kategoriyi diğerinden ayıran fiziksel sınıf karakteristiklerine karşılık gelen sınıf veri özelliklerinin nasıl belirleneceğidir. Özellik uzayındaki her bir nokta bir örüntüdür. Diğer bir deyişle, örüntü, sınıflandırma işleminin temel girdisi olan görüntü özelliklerine ait ölçüm vektörüdür.

Genel olarak sınıflandırmada, kategorilere ait özellikler arasındaki karışım nedeniyle birbirlerinden ayırt edilebilirliği etkileyen başlıca dört faktör vardır:

  1. Topoğrafya ve topoğrafik aydınlanma koşulları
  2. Atmosferik değişkenlik
  3. Algılayıcı kalibrasyon değişimleri
  4. Bir pikselin yeryüzünde karşılık geldiği alan içindeki sınıf karışımları.

Günümüzde yüksek mekânsal çözünürlüklü uydu verilerinin kullanımının hızla artmasıyla piksel tabanlı sınıflandırma yöntemlerine alternatif olarak nesne tabanlı sınıflandırma yöntemleri de kullanılmaya başlanmıştır.

Piksel Tabanlı Sınıflandırma: Genel olarak tematik haritalar, görüntü piksellerinin karşılık geldiği yeryüzü alanı sadece tek bir kategoriye ait olacak şekilde üretilir. Sınıflandırma algoritmaları herhangi bir kategori değerinin bir piksele atanması için belirli bir benzerlik fonksiyonu üretir. Piksel tabanlı sınıflandırmada, bilinmeyen piksele bu pikselin en büyük benzerlik değerine sahip olduğu sınıf etiketi atanır. Özellikle yapay zekâ çevrelerinde bu strateji “Kazanan Hepsini Alır” olarak bilinmektedir. Böyle bir sınıflandırma için özellik uzayı karar sınırları rijit ve tek anlamlıdır.

Alt Piksel Sınıflandırması: Alt piksel sınıflandırmasında her bir pikselin birden fazla sınıfa olan benzerlik değerleri elde edilebilir. Pikseller bu benzerlik değerlerine göre belirli üyelik oranlarıyla birden fazla sınıfa atanır. Böyle bir sınıflandırma için özellik uzayı karar sınırları bulanık yapıdadır. Benzerlik değerleri, örüntülere (piksel özellik vektörü) atanan her bir kategorinin ilgili örüntü içindeki rölatif bulunma oranlarını gösterir.

Alan Tabanlı Sınıflandırma: Piksel tabanlı sınıflandırmaya diğer bir alternatif de alan tabanlı sınıflandırmadır. Bu yöntemde pikseller yerine alanlar sınıflandırılır. Bu yöntem görüntüdeki alansal objelerin biçimsel sınırları hakkında öncül bilgiler gerektirir (örneğin tarım alanları gibi). Eğer bu objelerin sınırları sayısallaştırılır ve görüntüye kayıt edilirse veya segmentasyon algoritmalarıyla çıkartılırsa veya kenar çıkartım algoritmaları kullanılarak elde edilirse, bu sınırlar içinde kalan piksellerin özellikleri kullanılarak bu alanlar karakterize edilebilir. Örneğin bir alandaki spektral özellikleri temsil etmek için bantların ortalama ve standart sapma değerleri kullanılabilir. Alan tabanlı sınıflandırma yöntemi, daha çok SAR görüntü verileri için kullanılmaktadır. Bunun nedeni, bu görüntülerin bireysel piksellerin sınıflandırma performansını olumsuz etkileyen benek gürültüsüne sahip olmasıdır.

Nesne Tabanlı Sınıflandırma: Nesne tabanlı sınıflandırma, sadece görüntü- deki spektral bilgiyi (bant yansıtım değerleri) değil piksellerin komşuluk özelliklerini yansıtan doku ve bağlam bilgilerini de kullanan bir yöntemdir. Sınıflandırılan temel eleman piksel değil, komşuluk ilişkisine sahip piksel gruplarından oluşan objeler (nesneler)dir. Bireysel piksellerde görülemeyen semantik (anlamsal) bilgiler nesnelerde ve nesnelerin karşılıklı ilişkilerinde tespit edilebilir. Özellikle çok yüksek mekânsal çözünürlüklü uydu görüntülerinde yollar, binalar, park alanları veya piknik alanları, otlaklar, vb. birçok cisim benzer spektral özellikler gösterirler. Buna bağlı olarak piksel tabanlı yaklaşım hem düşük doğrulukta hem de sınıf dağılımı düzensiz ve anlamlı olmayan sonuçlar üretebilir.

Sınıflandırma işlemi için hangi algoritma kullanılırsa kullanılsın kontrollü ve kontrolsüz olmak üzere iki temel yaklaşım vardır. Kontrollü sınıflandırma yaklaşımında istenen sınıfları temsil eden öncül tematik bilgi vardır ve bunlara eğitim verisi denir. Kontrolsüz sınıflandırma yaklaşımında ise öncül herhangi bir tematik bilgi yoktur. Diğer bir ifade ile sınıfların ne olduğu ve örüntülerin hangi sınıfa atanacağı bilgisi bulunmamaktadır. Örüntüler belirli bir metriğe göre doğal olarak kümelenirler. Doğal spektral grupların oluşturduğu bu kümeler, daha sonra arazi incelemeleriyle veya topoğrafik haritalar ve hava fotoğrafları kullanılarak etiketlenir. Her iki yaklaşımda da sonuç ürün, her bir piksel için tek bir kategori içermektedir. Bunun tersine, karışık piksel sınıflandırma yönteminde, sınıfların ayırt edici özelliklerinin birbiriyle karışmış oldukları kabul edilerek her bir pikselin ilgili sınıflara olan üyelik dereceleri belirlenir. Bu yöntem bulanık (fuzzy) sınıflandırma olarak adlandırılmaktadır.

Kontrollü Sınıflandırma

Kontrollü yaklaşımda sınıflandırma algoritmaları parametrik ve parametrik olmayan algoritmalar olarak ikiye ayrılmaktadır. Parametrik algoritmalarda görüntü verisi için özel bir istatistiksel dağılım kabulü yapılır. Uygulamada genellikle Normal (Gauss) dağılım kullanılmaktadır. Normal dağılım özellikle optik uzaktan algılama verileri için neredeyse evrensel bir dağılım iken, Yapay Açıklıklı Radar (SAR) görüntüleri için uygun değildir. Bu dağılımın optik veriler için uygun olmasının başlıca iki nedeni vardır:

  1. Karar sınırlarının belirlenmesi için matematiksel olarak kolay işlenebilir analitik bir çözüm sunması
  2. Kontrollü sınıflandırmada eğitim veri kümesini oluşturan örüntülerin genellikle normal dağılıma benzer bir dağılım göstermesi.

Özellik Seçimi

Kontrollü sınıflandırmada, istenen karar sınırları eğitim verileriyle belirlendiği ve verinin doğal spektral kümeleşmesiyle oluşturulmadığı için sınıfların birbirlerinden ayırt edilebilir olmasının bir garantisi yoktur. Bu amaca yönelik olarak özellik seçiminde amaç, en iyi sınıflandırma doğruluğunu veren özelliklerin belirlenmesidir.

Eğitim

Bir görüntüyü istenen kategorilere ayırmak için sınıflandırma algoritmasının eğitilmesi, bir başka deyişle kantitatif karar fonksiyonlarının oluşturulması gerekir. Bu amaçla kategorileri temsil eden eğitim örüntüleri kullanılır. Sınıflandırma algoritması eğitim örnekleriyle temsil edilen farklı kategorileri tanımak için eğitildikten sonra eğitim sırasında oluşturulan karar sınırlarına göre görüntüdeki örüntüler sınıflandırılır.

Sınıflandırma Algoritmaları

Paralelkenar Yöntemi: Bu yöntemde bütün sınıflar için eğitim örüntüleri kullanılarak özellik uzayındaki minimum ve maksimum değerler belirlenir. Alternatif olarak ortalama değerlerin etrafında standart sapma biriminde belirlenen alt ve üst sınırlar da kullanılabilir. Herhangi bir örüntü hangi aralığa denk gelirse ilgili piksel o sınıfa atanır. Bu şekilde oluşturulan karar sınırları ikiden büyük boyutlu özellik uzayında hiper paralelkenarlar oluşturur. Herhangi bir aralık içinde kalmayan bir piksel, tanınmayan piksel olarak atanır. Tanımlanamayan piksellere ek olarak bu yöntemin diğer bir sakıncası aynı pikselin birden fazla aralığa girmesidir. Bu durumda pikselin en yakınındaki komşu piksellerin sınıf dağılımları göz önüne alınarak karar verilse de bu çözüm istatistiksel olarak tatmin edici olmayacaktır. Bu yöntem işlemsel olarak hızlı olmasına karşın hiper paralelkenarlar arasındaki bindirmeler sınıflandırma performansı için bir dezavantajdır. Özellikle uzaktan algılanmış çok spektrumlu görüntü verilerinde bantlar arası yüksek korelasyon olduğu için bu örtüşmeler kaçınılmazdır.

En Kısa Uzaklık Yöntemi: İşlemsel olarak basit olan bu yöntem özellikle eğitim veri sayısının az olduğu durumlar için uygundur. İlk adım olarak sınıf eğitim verilerinden her bir sınıf için ortalama değerler hesaplanır. Daha sonra bilinmeyen her bir pikselin bütün sınıf merkezlerine olan uzaklıkları hesaplanır. Bilinmeyen pikseller bu uzaklıklara göre en yakın oldukları sınıflara atanır. Uzaklık ölçütü olarak Öklit veya Blok-Yuvarlama yöntemleri kullanılabilir. Uygulamada Öklit uzaklığı yönteminin kullanımı daha yaygındır.

Maksimum Olabilirlik Yöntemi: Maksimum Olabilirlik yönteminde, bir piksel en yüksek olasılık değerine sahip olduğu sınıfa atanır. Bu olasılıkların hesaplanabilmesi için bir olasılık dağılım modeline ihtiyaç vardır. Uygulamada genellikle Normal dağılım modeli kullanılır. Buna göre, her bir sınıf eğitim verisinin Normal dağılım gösterdiği kabul edilir. Gerçekte bu kabul doğru olmamasına rağmen özellikle optik uzaktan algılama verilerinin modellenmesinde, Normal dağılımın uygun olduğu ve bu kabule dayanan sınıflandırma algoritmalarının daha sağlam algoritmalar oldukları görülmüştür. Normal dağılım tek değişken için ortalama ve varyans parametreleri ile çok değişkenli veri için ise ortalama vektörü ve kovaryans matrisiyle belirlidir.

Kontrolsüz Sınıflandırma

Herhangi bir öncül tematik bilginin kullanılmadığı kontrolsüz sınıflandırma yaklaşımında temel amaç, özellik uzayında belirli bir kriteri sağlayan doğal grupları (kümeleri) ortaya çıkarmaktır. Benzer özellik vektörüne sahip olan örüntüler kendi aralarında bulutsu görünümde noktalar grubu oluşturur. Her bir grup, farklı bir obje kategorisine ait örüntüler için çok boyutlu gösterim belirler. Sonuçta oluşan kümelerin, hangi kategorilere ait olduğu bilinmemekte ancak arazi ölçümleri, harita ve hava fotoğraflarıyla kümelerin sınıf karşılıkları belirlenebilmektedir. Daha sonra bu kümeler birleştirilip melez sınıflandırma işleminde de kullanılabilir. En temel kontrolsüz sınıflandırma yöntemi K-ortalamalar algoritmasıdır. Bu yöntemde örüntüler, seçilen küme merkezlerine olan uzaklıkları dikkate alınarak en yakın oldukları kümeye atanırlar. Öncül tematik bilgi olmadığı için küme merkezleri başlangıçta ya rastlantısal ya da sistematik olarak belirlenir. Daha sonra herbir kümeleme işleminden sonra küme merkezleri güncellenir. Böylece algoritma en uygun merkez değerlerini, diğer bir ifade ile örüntüler için en uygun küme etiketlerini adım adım (iteratif) güncelleyerek elde eder. En yaygın kullanılan uzaklık ölçütü Öklit normudur. Küme merkezlerinin sistematik belirlenmesinde özellik uzayı amaçlanan küme sayısına göre bölümlenir.

Doğruluk Analizi

Sınıflandırmada doğruluk kavramı, örüntülerin gerçekten ait oldukları kategorilere atanmasını ifade eder.

Örüntülerin yanlış sınıflara atanması sınıflandırma hatasıdır. Hata ne kadar küçükse doğruluk o kadar yüksek olacaktır. Bir sınıflandırma işleminin doğruluğunun hesaplanmasındaki amaç:

  1. Hataların nedenlerinin anlaşılıp uygun olarak düzeltilmesiyle (örn., eğitim örüntüleri daha kaliteli seçilebilir) üretilen tematik haritaların doğruluklarını artırmak
  2. Sınıflandırma sonucu elde edilen tematik haritalara dayanarak yapılacak analizlerin (örn., bir tarımsal ürünün rekolte tahmin doğruluğu, en çok bu tahminin yapıldığı uydu görüntüsünün sınıflandırılma doğruluğu kadar olabilir) doğruluklarını belirlemek
  3. Belirli bir uygulamada hangi sınıflandırma yönteminin (örn., Maksimum Olabilirlik veya En Kısa Uzaklık) kullanılacağına karar vermektir. Piksellerin gerçekte hangi kategorilere ait oldukları bilinmediğinden uygulamada kullanılan doğruluk ölçütleri ampirik değerlerdir. Diğer bir deyişle teorik parametrelerin tahmin edilen istatistik değerleridir. Sınıflandırma doğruluk derecesinin belirlenmesinde örüntülerin kategorilere atanabilmesi için gereken karar fonksiyonlarının hesaplandığı eğitim veri setinin kullanılması en yaygın yaklaşımdır. Ancak bu yaklaşım, istatistiksel olarak yanlı ve taraflıdır. Olabildiğince yansız, dolayısıyla teorik doğruluk değerini daha iyi tahmin eden doğruluklar, karar sınırlarının belirlenmesinde kullanılmamış veriler kullanılarak hesaplanabilir. Buna göre, eğitim veri kümesinden farklı ancak aynı sınıfları temsil eden yeni bir veri kümesinin oluşturulması gerekir. Test verisi olarak adlandırılan bu veri kümesi üzerinden hesaplanan doğrulukların istatistiksel olarak daha yansız olması beklenir.

Hata Matrisi

Sınıflandırma doğruluklarının belirlenmesinde en yaygın yaklaşım hata matrisi kullanımıdır. Hata matrisinin oluşturulmasında bütünüyle ilgili kategorilere ait olduğu kabul edilen referans verileri (test verileri) kullanılır. İlk olarak görüntüdeki bütün pikseller, eğitim verisiyle tanımlanan sınıflandırma yöntemine göre sınıflandırılır. Daha sonra referans verilerine karşılık gelen piksellerin kaç tanesinin hangi sınıfa atandığı belirlenir. Son adım olarak referans verilerine ait bu sayılar sütunlar halinde yan yana yerleştirilerek bir matris oluşturulur. Hata matrisi olarak adlandırılan bu matrisin her bir sütunu ayrı bir kategoriye karşılık gelirken satırlar referans verilerin atandıkları sınıfları temsil etmektedir. Buna göre toplam k tane sınıf için hata matrisi k satır ve k sütundan oluşur.


Yukarı Git

Sosyal Medya'da Paylaş

Facebook Twitter Google Pinterest Whatsapp Email